If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+10q-4=4q-4
We move all terms to the left:
3q^2+10q-4-(4q-4)=0
We get rid of parentheses
3q^2+10q-4q+4-4=0
We add all the numbers together, and all the variables
3q^2+6q=0
a = 3; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·3·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*3}=\frac{-12}{6} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*3}=\frac{0}{6} =0 $
| -2(x-1)=3x-1 | | 7x+18=36 | | 9y-4(y+5)=10 | | 42.8-3.30n=n | | V/3=v/2-2 | | -1/3x-2=6 | | 3-6e=8+4(9-2e) | | 1.3b+1.5=5.4 | | 2+x^2/6=4.5 | | m-9=-1$ | | x/4+8=-8 | | 4(2-x)(x+7)=0 | | 1/9x+8=14 | | (-14-y)/4=y | | b+82=17 | | -2=-6+2y | | 8^4x=135 | | 1/2x-1=9 | | 3x-38=63 | | .75g=8 | | 7y+3=12y-7= | | 9=n+17 | | x^2(8x+3)-4(8x+3)=0 | | W/2+3/10=w/5 | | 6(x-5)-10=15x-139 | | -8+2y=6 | | b+0=1 | | c+1=2 | | 2x+55=123 | | (x-2)(x-3)=3x | | 1/9u-8=-5 | | 7d+2=9 |